A NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATION OF GROWTH

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION

In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.

متن کامل

Hybrid differential transform-finite difference solution of 2D transient nonlinear annular fin equation

In the present paper, hybrid differential transform and finite difference method (HDTFD) is applied to solve 2D transient nonlinear straight annular fin equation. For the case of linear heat transfer the results are verified with analytical solution. The effect of different parameters on fin temperature distribution is investigated. Effect of time interval of differential transform on the stabi...

متن کامل

Decay and Growth for a Nonlinear Parabolic Difference Equation

We prove a difference equation analogue of the decay-of-mass result for the nonlinear parabolic equation ut = ∆u+ μ|∇u| when μ < 0, and a new growth result when μ > 0.

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1954

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.40.8.708